MATH 220A

Midterm Exam, November 8, 2019

Instructions: 1 hour. You may use without proof results proved in Conway up to and including Chapter III. When using a result from the text, be sure to explicitly verify all hypotheses in it. Present your solutions clearly, with appropriate detail.

1. $(15+15=30 \mathrm{p})$ Compute the radii of convergence of the following power series:
(a) $\sum_{n=0}^{\infty} a^{n} z^{n^{2}}$
(b) $\sum_{n=1}^{\infty} n^{2} a^{n} z^{n^{2}-1}$,
where $a \in \mathbb{C}$ and $a \neq 0$.
2. $(10+10+10=30$ p) Let $S(z)$ be a Möbius transformations such that S maps lines in \mathbb{C} to lines. Determine all such $S(z)$ that also have k fixed points in \mathbb{C}, where
(a) $k=2$
(b) $k=1$
(b) $k=0$.
3. (30p) Let $(X, d),(\Omega, \rho)$ be metric spaces, and $G \subset X, \Delta \subset \Omega$ open subsets. A map $f: G \rightarrow \Delta$ is called proper if $f^{-1}(K) \subset G$ is compact for every compact $K \subset \Delta$. (The empty set is compact.) Suppose that $f: \bar{G} \rightarrow \bar{\Delta}$ is continuous and and its restriction to G is a proper map $G \rightarrow \Delta$. Show that $f(\partial G) \subset \partial \Delta$.
