MATH 220A

Midterm Exam, November 8, 2019

Instructions: 1 hour. You may use without proof results proved in Conway up to and including Chapter III. When using a result from the text, be sure to explicitly verify all hypotheses in it. Present your solutions clearly, with appropriate detail.

1. (15+15=30p) Compute the radii of convergence of the following power series:

(a)
$$\sum_{n=0}^{\infty} a^n z^{n^2}$$
 (b) $\sum_{n=1}^{\infty} n^2 a^n z^{n^2-1}$,

where $a \in \mathbb{C}$ and $a \neq 0$.

2. (10+10+10=30p) Let S(z) be a Möbius transformations such that S maps lines in \mathbb{C} to lines. Determine all such S(z) that also have k fixed points in \mathbb{C} , where

(a) k = 2 (b) k = 1 (b) k = 0.

3. (30p) Let (X, d), (Ω, ρ) be metric spaces, and $G \subset X$, $\Delta \subset \Omega$ open subsets. A map $f: G \to \Delta$ is called *proper* if $f^{-1}(K) \subset G$ is compact for every compact $K \subset \Delta$. (The empty set is compact.) Suppose that $f: \overline{G} \to \overline{\Delta}$ is continuous and and its restriction to G is a proper map $G \to \Delta$. Show that $f(\partial G) \subset \partial \Delta$.